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Abstract A mathematical model for thermoelastic processes in a piecewise–homogeneous pre-stressed solid is
considered. By use of a cubic elastic potential, thermoelasticity relations for bodies with inhomogeneous initial
strains are obtained and equations describing the displacement dynamics are formulated. The coefficients of the
equations are functions of the initial strain components. An iterative approach for solving boundary-value problems
for the obtained system of equations with variable coefficients is developed. This approach enables to reduce prob-
lems concerning the determination of thermoelastic displacements in a body with inhomogeneous initial strains to
a sequence of problems with fixed coefficients. Possibilities for the application of the developed approach and a
mathematical model for the creation of new methods for a non-destructive determination of elastic-strain fields and
residual stresses in solids are discussed.

Keywords Iterative methods · Inverse problems · Nondestructive testing · Pre-stressed bodies ·
Residual stresses · Thermoelastic disturbances

1 Introduction

The so-called fully and partly destructive methods for the determination of residual stresses in solids are well
known [1; Chaps. 3, 4, 9]. Usually, for this purpose, dissection of the object into separate parts [1; pp. 98–102,
151–153]; drilling of through or deaf holes [2], removal of layers of material [1; pp. 60–74], formation of flutes
[3] etc. are used. All this results in a release of part of the elastic energy accumulated in the body and in its defor-
mation. By measuring displacements or strains on the body surface, one can assess the residual stresses acting
in the body before the energy release. Obviously, the lesser destructive the method is, the smaller are the strains
induced in the object and the more sensitive the instruments for measuring the surface displacements (or strains)
should be.

Holographic speckle interferometry enables to measure the surface-displacement components and their spatial
gradients with high resolution and precision. A modified version of this technique, which is known as electronic
speckle interferometry or shearography [4], enables to register sequences of interferograms in digital format at a high
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rate, which can therefore be used to study non-stationary processes. Application of these high-precision measurement
techniques enables to reduce substantially the requirements to the necessary level of surface deformations when
one of the abovementioned methods of determining residual stresses is implemented [2].

In this connection a possibility to create a new nondestructive method for determining residual stresses on the
basis of data obtained by measuring the irreversible deformation caused by local heating was studied in [5, 6]. Here
the following idea has been worked out.

Thermal stresses, caused by local heating, being imposed on residual ones, can reach the elasticity limit of the
material and result in plastic deformation. Hence, if the thermal stresses are known, then depending on the appearance
of the plastic deformations, one can judge the level of the residual stresses which acted prior to the local heating.

Due to this method, the first holographic exposition should be done before local heating of the object in its homo-
geneous thermal state and the second after the temperature field of the object, disturbed by heating, has returned
to its original homogeneous value. On the basis of the holographic interferograms, obtained in such a way, the
displacement-vector components of the plastic deformation, caused by heating and cooling of the body, can be
retrieved.

But it is worth pointing out that this method cannot be quite considered as nondestructive, since irreversible
changes (plastic deformation) caused by heating still arise in the object. Therefore, alternative approaches, not
resulting in irreversible changes of the object, are interesting to study.

Our purpose in this paper is to investigate an approach towards the creation of a nondestructive method for deter-
mining the stress–strain state of solids using data obtained by measuring parameters of the thermoelastic processes
in the object.

The idea of the method [7] is that thermoelastic processes, initiated in a pre-stressed solid by external heating,
can interact with the initial strain field. So, parameters of these processes (for instance, surface displacements or
strains) have become dependent on the initial stress–strain state of the body. Measuring these parameters by use
of the speckle holographic interferometry technique, one can obtain information that may be used to retrieve the
initial stress–strain state of the body.

This method allows the parameters of the external heat influence to be chosen in a way that does not result in
irreversible deformation. So the first holographic exposure in this case should be also done before starting heating
the object, but the second one must be done during the heating–cooling process at a moment of time when the ther-
moelastic processes caused by external heating have not yet finished. The parameters of the thermoelastic processes
can be measured at several time moments during the heating–cooling process. This enables to increase the body of
information obtained in such a way.

In [8, 9] a variational approach to strain-fields retrieval was developed. This approach is based on three ele-
ments: a mathematical model of the initial stress–strain state, a set of informative parameters collected by sounding
the object with an external field, and a model describing the interaction of the sounding field with the strained
object. This model establishes relationships between the measured informative parameters and strain (and/or stress)
distributions in the body.

To implement this approach for the case when an external heat flux is applied to probe the object, it is necessary
to establish equations which connect the thermoelastic displacements (and/or strains) at the surface, which can be
used as the informative parameters, with parameters of the initial stress–strain state of the body.

With this in mind, a mathematical model describing the thermoelastic behaviour of a piece-wise homogeneous
pre-stressed solid is considered here. Starting from a cubic elastic potential, linearized thermoelasticity equations,
the coefficients of which are functions of the components of the initial elastic strain tensor, will be defined and
appropriate equations for the dynamics of the displacements given.

An iterative method for solving the boundary-value problems, formulated within the framework of the model, is
developed. It allows reducing the problem with variable coefficients to some sequence of problems with constant
coefficients.

Possibilities for applying the developed mathematical model to create nondestructive methods for determining
residual stresses in solids, using data obtained by measuring thermoelastic displacements or strain components on
the body surface during heating, will be discussed.
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2 Mathematical model for initial stress–strain state

We consider a piece-wise homogeneous solid body B= ∪Bα in which, at a fixed homogeneous temperature T0,
stresses σ = {

σij

}
act. In this state the body occupies an area V in three-dimensional Euclidean space. The arrange-

ment of the material pointsX ∈ Bα of the body in the areaV will be called its current configuration. The components
σij of the Cauchy stress tensor σ are continuously differentiable within the bounded areas Vα of each part Bα; these
are functions which satisfy in these areas the equilibrium equations

∂σij

∂xi

+ Fj = 0. (1)

On the external body boundary ∂V and the surfaces Sµ dividing different body parts Bα , the components σij satisfy
the conditions:

σijnj

∣
∣
∂V = fi,

[
σij νj

]
Sµ

= 0. (2)

Here F = {Fi} and f = {fi} are the external volumetric and surface forces, respectively; xi stands for the Cartesian
coordinates of material points X ∈ Bα in the current configuration V; nj and νj denote the Cartesian components
of the unit vectors normal to ∂V and Sµ; brackets [...]Sµ

denote the first-kind discontinuity on the surface Sµ; use
of repeated indices means that the sum over the entire index range has to be taken.

We require the strain components εij to be small enough and purely elastic within the restricted areas Vα of
each body part Bα , so the distinction between these tensor components with respect to the coordinate systems of
reference V0 and the current V configurations becomes negligible. Then the following relation applies:

εij = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
. (3)

Here ui stands for Cartesian components of the displacement vector u = {ui} which determines the body transition
from the reference non-stressed configuration V0 to the current one V . The vector u is assumed to be a twice con-
tinuously differentiable vector function of coordinates xi within the areas of each body part Bα , but on the surfaces
Sµ it can have discontinuous jumps:

[u]Sµ
= uµ. (4)

Here uµ denotes some vector function defined on the surface Sµ.
This means that the initial strains are compatible within the all body parts Bα but in null sets of points, i.e., on the

interface surfaces Sµ deformation incompatibility can exist. In the model conditions (4) are responsible for residual
stresses acting in the body in the current configuration. The only origin of the residual stresses is the deformation
incompatibility occurring on the boundaries Sµ. The jump vector function uµ (r), r ∈ Sµ is a measure of this
incompatibility on the surface Sµ. If a vector uµ (r), r ∈ Sµ is zero-valued, then the initial strain components are
compatible on the corresponding surface.

Besides the residual, stresses caused by external loading (by surface f = {fi} and volumetric F = {Fi} forces)
act in the body. We assume the stresses caused by external loading are small enough, so they cannot change the
residual ones. This means, in particular, that the functions uµ (r), r ∈ Sµ do not depend on the body’s strain–stress
state.

Under such conditions each part Bα is a hyper-elastic body for which an elastic potential � = �α

(
εij

)
exists.

Then, one-to-one relations between the components of the stress σij and strain εij tensors in the volume Vα of each
body part Bα ,

εij = εij (σkl) , σij = σij (εkl), (5)

can be expressed by

σij = 1

2

(
∂�

∂εij

+ ∂�

∂εji

)
. (6)
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If we chose the cubic elastic potential as follows:

�0(εij ) = 1

2
Cijkl εij εkl + 1

6
�ijklmn εij εkl εmn, (7)

the elasticity relations (5) will look like

σij =
(

Cijkl + 1

2
�ijklmn εmn

)
εkl . (8)

Here Cijkl and �ijklmn (i, j, k, l,m, n = 1, 2, 3) denote elasticity coefficients of the second and the third orders—
components of elastic tensors of rank four and six correspondingly. The tensors Cijkl and �ijklmn are piecewise-
homogeneous in the body volume V , symmetric with respect to each pair of indices and invariant with respect to
permutations of these pairs.

For isotropic solids with the Murnaghan elastic potential, the elasticity tensors can be expressed as

Cijkl = λδij δkl + µ (δikδjl + δilδjk), �ijklmn = �′
((ij)(kl)(mn)), (9)

�′
ijklmn = 2 (l + 2m) δij δklδmn − 6mδij ∈pkm∈pln + n ∈ikm∈j ln . (10)

Here δij denotes Kronecker’s delta, ∈ikm stands for Levi-Civita symbols; λ, µ and l, m, n stand for the second
(Lamé constants) and third (Murnaghan coefficients) order elastic modulus, which are treated as piecewise-homo-
geneous parameters in the body volume V . Parenthesis in the notation �′

((ij)(kl)(mn)) denote symmetrization of the
components with respect to the corresponding groups of indices.

Equations (1), (3), (8), together with the boundary-interface conditions (2) and (4), form a closed mathematical
model for the stress–strain state of the heterogeneous body, on the interface boundaries Sµ of which the deforma-
tion incompatibility, resulting in residual stresses, can occur. This means that, if the vector functions f (r), r ∈ ∂V;
F (r), r ∈ Vα and uµ (r), r ∈ Sµ are given, then correct direct problems for determining the stress–strain state can
be formulated within the framework of the model.

When elastic bodies, such as metals, glass, ceramics etc, are considered, there is no need to use the nonlinear
equations (8) in direct problems. For such objects the linearized elasticity relations,

σij = Cijkl εkl, (11)

are sufficient to use instead of (8), when direct problems are defined. This is possible because for such objects the
elastic strains are much less than unity and the elastic moduli Cijkl and �ijklmn are of the same order of magnitude.

Such a simplification enables us to reduce the mathematical model of the initial stress–strain state to linear
equations in the displacements, which for isotropic bodies can be written, for instance, in the form

µ∇2ui + (λ + µ)
∂2uk

∂xi∂xk

+ Fi = 0, (12)

where ∇2 stands for 3-D Laplace operator.
In this case the conditions (2) can also be reduced to linear relations for the displacements:

Cijkl

∂uk

∂xl

∣
∣
∣
∣
∂V

nj = fi,

[
Cijkl

∂uk

∂xl

]

Sµ

νj = 0. (13)

The linear direct problem (12), (13), (4) can be divided into two independent ones; these are the problems for
the determination of the residual and mechanical (causing by external loading) stresses. To determine the stresses
caused by external loading, the system (12) should be solved subject to the conditions (4), in which uµ ≡ 0, and
the conditions (13). To find the residual stresses, the system (12), in which Fi ≡ 0, should be solved subject to the
conditions (13), in which fi ≡ 0, and conditions (4).

If the functions uµ (r), r ∈ Sµ and/or f (r), r ∈ ∂V; F (r), r ∈ Vα are unknown a priori, it becomes impossible
to formulate correct direct problems for the determination of the stress–strain state in the body. In this case one
might consider inverse problems.

In the next chapters the nonlinear elasticity relations (8) will be used to construct a thermoelasticity model for
prestressed bodies, in which residual stresses, caused by deformation incompatibility occurring on some inside
surfaces, and stresses, caused by external loading, act.
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3 Thermoelasticity relations for pre-stressed solids

Let a thermoelastic disturbance, caused by external heating of the body, be imposed on the initial stress–strain
state. Variations of the temperature θ are small enough; therefore the total stresses, which include the mechanical
(caused by external loading), residual and thermal components, cannot cause irreversible changes in the material.
This means that additional residual stresses do not occurr and the disturbance strains eij are small, including the
elastic ee

ij and temperature αij θ terms:

eij = ee
ij + αij θ (14)

and are compatible in the areas Vα of each body part Bα:

eij = 1

2

(
∂wi

∂xj

+ ∂wj

∂xi

)
. (15)

Here αij denotes the components of the thermal-expansion tensor; wi stands for components of the displacement
vector w from the current configuration V to the disturbed one Ṽ which is a twice continuously differentiable
vector-function in the areas Vα of each body part Bα and continuous on the boundary Sµ dividing these parts:

[w]Sµ
= 0. (16)

The geometrically linear approach is used, allowing the strain components for the disturbed state ε̃ij to be presented
as the sum ε̃ij = εij + eij , and in this state the elastic potential �̃ can be taken as

�̃ = �0
(
εij + eij − αij θ

)
. (17)

Let us expand the function in the right-hand side of (13) into a power series with respect to the variables eij and
αij θ and, taking into account that they are small, retain terms not higher than order two. Then, for a potential such
as (7), we obtain:

�̃ = �0
(
εij

) + σij

(
eij − αij θ

) + 1

2

(
Cijkl + �ijklmn εmn

) (
eij − αij θ

)
(ekl − αklθ). (18)

For the disturbed state, determined by the parameters
(
σ̃ij , ε̃ij

)
, Eq. (6) should be written as

σ̃ij = 1

2

(
∂�̃

∂ε̃ij

+ ∂�̃

∂ε̃ji

)

. (19)

Substituting the relation (18) in (19) , we come to the following linearized thermoelasticity relations for pre-stressed
solids:

sij = (
Cijkl + �ijklmn εmn

)
ekl − (

Cijkl αkl + �ijklmn αkl εmn

)
θ. (20)

Here sij = σ̃ij − σij stands for the components of the additional stresses caused by heating.
After solving the set of equations (15) with respect to the components εij and taking into account that the

components εij are small, we obtain:

eij = (
Sijkl − Gijklmn εmn

)
skl + αij θ, (21)

where

Gijklmn = SijopSklsg�opsgmn;
here Sijkl stands for components of the elastic compliance tensor:

Sijkl = λ

2µ (3λ + 2µ)
δij δkl + 1

µ
(δikδjl + δilδjk). (22)

We will take into account the dependence of the coefficients of thermal expansion on the initial strains as

αij = α0
ij + Aijklεkl . (23)
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Here α0
ij stands for components of the thermal-expansion tensor of the body in its unstrained state, Aijkl are the

components of a material tensor of rank four that take into account the influence of the intial strain of the body on
its thermal expansion.

For an isotropic body we have

α0
ij = αδij , Aijkl = α1δij δkl + α2(δikδjl + δilδjk). (24)

Here α is the thermal-expansion coefficient of the isotropic body, α1 and α2 denote material coefficients that account
for the influence of the strain tensor on thermal expansion.

If the terms of order three, α1θεij εkl and α2θεij εkl , are disregarded, Eq. (20) can be written as

sij = (
Cijkl + �ijklmn εmn

)
ekl − (

βij + Lijkl εkl

)
θ. (25)

Here

βij = βδij , Lijkl = β1δij δkl + β2
(
δikδjl + δilδjk

)
, β = (3λ + 2µ) α,

β1 = (6l + n) α + (3λ + 2µ) α1 + 2λα2, β2 = −αn + 4µα2.
(26)

If the initial strains vanish or when the elastic and temperature-expansion properties of the body do not depend on
strain, then Eq. (25) turns into the known thermoelasticity relations for isotropic bodies.

4 Equations of motion for disturbances

Considering that the body is in equilibrium initially, we have the following equations describing the dynamics of
the disturbed state:

ρ
∂2wi

∂t2 = ∂sij

∂xj

, (27)

where ρ is the mass density, and t the time variable.
Starting from here and taking into account Eqs. 11 and 15, we obtain the following linearized thermoelastic

equations for the displacements:

ρ
∂2wi

∂t2 = ∂

∂xl

(
(
Cijkl + �ijklmn εmn

) ∂wk

∂xj

)
− ∂

∂xj

((
βij + Lijkl εkl

)
θ
)
, (28)

which are valid for each homogeneous part Bα . On the external, ∂V , and internal, Sµ, surfaces the conditions

(
Cijkl + �ijklmn εmn

)
(

∂wk

∂xl

− αklθ

)
nj

∣
∣
∣
∣
∂V

= 0,

[
(
Cijkl + �ijklmn εmn

)
(

∂wk

∂xl

− αklθ

)]
νj

∣
∣
∣
∣Sλ

= 0, [wi]Sλ
= 0

(29)

hold.
Inasmuch as the initial strains εij are spatially inhomogeneous, the coefficients of the system (28) and the relations

(29) are dependent on the spatial coordinates.

5 Iterative process

Let us rewrite Eq. 28 and conditions (29) in the form

ρ
∂2wi

∂t2 = Cijkl

∂2wk

∂xj ∂xl

− ∂

∂xj

((
βij + Lijkl εkl

)
θ
) + ∂

∂xj

(
�ijklmn εmn

∂wk

∂xl

)
, (30)
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Cijkl

∂wk

∂xl

nj

∣
∣
∣
∣
∂V

= (
βij + Lijkl εkl

)
θnj

∣
∣
∂V − �ijklmn εmn

∂wk

∂xl

nj

∣
∣
∣
∣
∂V

,

[
Cijkl

∂wk

∂xl

νj

]

Sλ

= [(
βij + Lijkl εkl

)
θνj

]
Sλ

−
[
�ijklmn εmn

∂wk

∂xl
νj

]

Sλ

,

(31)

and compare the terms in the right-hand sides of (30) and the relations (31).
The elastic constants Cijkl and �ijklmn for the material of interest have values of the same order; let us denote

this order by C
∥
∥Cijkl

∥
∥ ∼ ∥

∥�ijklmn

∥
∥ ∼ C. (32)

Let us introduce norms for the tensor fields εij , eij and their gradients ∂εij /∂xk, ∂eij /∂xk:
∥
∥εij

∥
∥ = E,

∥
∥eij

∥
∥ = E,

∥
∥
∥
∥
∂εij

∂xk

∥
∥
∥
∥ = Dε,

∥
∥
∥
∥
∂eij

∂xk

∥
∥
∥
∥ = De. (33)

Then the first term in the right-hand side of Eq. 30 can be evaluated as CDe and the last one as CEDe + CDdε.
From this follows that the last term in the right-hand side of (30) will be small compared with the first one if the
following condition is satisfied:

E + E
Dε

De

� 1. (34)

In this model an elastic initial state and small thermoelastic disturbances are considered, so for metals we have

E < E � 1. (35)

This means that condition (34) will be satisfied if the order of magnitude of the ratio Dε/De does not exceed unity
significantly
Dε

De

≤ 1. (36)

Hence we may conclude the following: the smaller the gradient of the initial strains and the higher the strain
gradients of the disturbed state are, the better condition (34) will be satisfied.

Similarly, we can see that from the validity of inequality (35) follows that the last terms in the right-hand side of
the first and second equations of (36) are small compared to the left-hand sides of these relations, respectively.

Thus, when the restrictions (35), (36) on the initial and disturbed strain fields are satisfied, the problem (30), (31)
can be solved by an iterative method.

Due to this, if the solution of the problem

ρ
∂2wi

∂t2 = Cijkl

∂2wk

∂xj ∂xl

− ∂

∂xj

((
βij + Lijkl εkl

)
θ
)
, (37)

Cijkl
∂wk

∂xl
nj

∣
∣
∣
∂V = (

βij + Lijkl εkl

)
θnj

∣
∣
∂V ,

[
Cijkl

∂wk

∂xl
νj

]

Sλ

= [(
βij + Lijkl εkl

)
θνj

]
Sλ

, [wi]Sλ
= 0,

(38)

is taken as a first approximation v
(0)
i = wi , then each next (p + 1)-approximation (p = 0, 1, . . .) will be obtained

as a solution of the following problem

ρ
∂2v

(p+1)
i

∂t2 = Cijkl

∂2v
(p+1)
k

∂xj ∂xl

+ ∂

∂xj

(

�ijklmn εmn

∂w
(p)
k

∂xl

)

, (39)

Cijkl

∂v
(p+1)
k

∂xl

nj

∣
∣
∣
∣
∣
∂V

= − �ijklmn εmn

∂w
(p)
k

∂xl

nj

∣
∣
∣
∣
∣
∂V

,

[

Cijkl

∂v
(p+1)
k

∂xl

νj

]

Sλ

= −
[

�ijklmn εmn

∂w
(p)
k

∂xl

νj

]

Sλ

,
[
v

(p+1)
i

]

Sλ

= 0.

(40)
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Here v
(p)
i stands for the improvement of the displacements after the p-th iteration: v

(p)
i ≡ w

(p)
k − v

(0)
k ; the upper

index denotes the iteration number.
We can arrive at another iterative process by representing the relations (15), (25), (27) in the form

e
(0)
ij = 1

2

(
∂w

(0)
i

∂xj

+ ∂w
(0)
j

∂xi

)

, ρ
∂2w

(0)
i

∂t2 = ∂s
(0)
ij

∂xj

, s
(0)
ij = Cijkle

(0)
kl − (

Cijkl + �ijklmn εmn

)
αklθ,

e
(p+1)
ij = 1

2

⎛

⎝∂v
(p+1)
i

∂xj

+ ∂v
(p+1)
j

∂xi

⎞

⎠, ρ
∂2v

(p+1)
i

∂t2 = ∂p
(p+1)
ij

∂xj

, p
(p+1)
ij = Cijklu

(p+1)
kl + �ijklmn εmne

(p)
kl ,

(41)

where p
(p+1)
ij and u

(p+1)
ij are iterative improvements of the perturbed stress and strain tensors:

p
(p+1)
ij = s

(p+1)
ij − s

(0)
ij , u

(p+1)
ij = e

(p+1)
ij − e

(0)
ij , p = 0, 1, 2, . . . (42)

From the first and fourth equation of (41) we have that the strain field is compatible during each iteration:

∈ikl∈jmn

∂2e
(0)
km

∂xl∂xn

= 0, ∈ikl∈jmn

∂2u
(p+1)
km

∂xl∂xn

= 0. (43)

Starting from (41) and (43), we may construct an iterative sequence for the stresses that is equivalent to (37)–(40).
Thus, if the initial strains are known, the perturbed thermoelastic state can be determined by sequentially solving

boundary-value problems of type (37)–(40). The equations and boundary conditions in these problems for different
iterations differ from one another only by their right-hand sides. These right-hand terms can be calculated during
each step from the solution obtained during the previous iteration.

6 Case of 2-D initial stress–strain state

Let the initial strain state be the plane one:

εij = εij (x1, x2), i, j = 1, 2, εi3 = ε3i = 0, ε33 = const. (44)

Let the temperature disturbance also be 2-D: θ = θ (x1, x2, t). Then the displacement vector can be taken in the
form

w = (w1 (x1, x2), w2 (x1, x2), e33x3)
T. (45)

Here e33 is a parameter independent of the x1, x2-coordinates, the value of which is dependent on the clamping
condition acting at infinity in the direction x3.

In the quasi-static case (37) and (39) can be transformed into:

µ
v
(p)
i + (λ + µ)

∂

∂xi

(
∂v

(p)
1

∂x1
+ ∂v

(p)
2

∂x2

)

= ∂f
(p)
ij (εmn)

∂xj

, i, j = 1, 2. (46)

Here 
 stands for the Laplace operator in Cartesian coordinates in the plane x1, x2, and the following notations for
the functions f

(p)
ij (εmn) for different iterations are used:

f
(0)
ij = θ

(
(β + (β1 + β2) ε) δij + β2

(
εij − δij ε

))
, i, j = 1, 2 (47)

for p = 0, and

f
(p)
11 = 6m

∑

i,j=1,2
εij e

(p−1)
ij + 2 (l − m) εe(p−1) + n

(
ε33e

(p−1)
22 + ε22e

(p−1)
33

)
,

f
(p)
12 = f

(p)
21 = −n

(
ε12e

(p−1)
33 + ε33e

(p−1)
12

)
,

f
(p)
22 = 6m

∑

i,j=1,2
εij e

(p−1)
ij + 2 (l − m) εe(p−1) + n

(
ε33e

(p−1)
11 + ε11e

(p−1)
33

)
,

(48)

for p ≥ 1.
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Here

ε = ε11 + ε22 + ε33, e(p) = e
(p)
11 + e

(p)
22 + e

(p)
33 . (49)

Thus, in the 2-D quasi-static case, the iterative process is completed at each step of the system of equations

µ
v1 + (λ + µ)
∂

∂x1

(
∂v1

∂x1
+ ∂v2

∂x2

)
= ∂f11

∂x1
+ ∂f12

∂x2
,

µ
v2 + (λ + µ)
∂

∂x2

(
∂v1

∂x1
+ ∂v2

∂x2

)
= ∂f21

∂x1
+ ∂f22

∂x2

(50)

in which f11, f12 = f21, f22 are given functions.
Let us introduce the following functions

η ≡ ∂v1

∂x1
+ ∂v2

∂x2
, ω ≡ 1

2

(
∂v1

∂x2
− ∂v2

∂x1

)
, (51)

which, as follows from (50), satisfy the equations


η = (λ + 2µ)−1 fη, 
ω = (2µ)−1 fω, (52,53)

where

fη ≡ ∂2f11

∂x2
1

+ 2
∂2f12

∂x1∂x2
+ ∂2f22

∂x2
2

, fω ≡ ∂2

∂x1∂x2
(f11 − f22) −

(
∂2

∂x2
1

− ∂2

∂x2
2

)

f12. (54,55)

The parameters η and ω determine variations of the elementary coordinate area and rotation angle of an elementary
linear element in the plane x1x2, respectively. If these functions are known, the displacement components v1, v2

can be determined by solving the equations


v1 = ∂η

∂x1
+ 2

∂ω

∂x2
, 
v2 = ∂η

∂x2
− 2

∂ω

∂x1
(56)

which follow from (51).
To solve the initial-boundary-value problem for (50), it is sufficient, during each iteration, to choose some par-

ticular solutions η = η (x1, x2), ω = ω (x1, x2) of (52) and (53), then find the general solutions of (56) and subject
these to the conditions (38) and (40).

Particular solutions of Eqs. (52) and (53) can be found by utilizing the elementary solution of the 2-D Laplace
equation:

G(x1, x2, ξ1, ξ2) = log
(
(x1 − ξ1)

2 + (x2 − ξ2)
2
)−1/2

. (57)

Then we will have

η (x1, x2) = 1

λ + 2µ

∫ ∞

0

∫ ∞

0
fy (ξ1, ξ2) G (x1, x2, ξ1, ξ2) dξ1dξ2,

ω (x1, x2) = 1

2µ

∫ ∞

0

∫ ∞

0
fω (ξ1, ξ2)G (x1, x2, ξ1, ξ2) dξ1dξ2.

(58)

Once the functions η (x1, x2) and ω (x1, x2), are known, one can determine the right-hand sides of (56) and, using
the elementary solutions (57), find particular solutions of these equations. To establish the solutions of the cor-
responding boundary-value problems for the Laplace equation, which satisfy conditions (38) and (40), potential
theory, boundary elements or finite-element methods can be used.

7 Case of local temperature disturbance

If the temperature disturbance is local, the thermoelastic state caused by this disturbance will also be local. Hence,
heating the object in an area sufficiently remote from the body surface and the boundaries, dividing its different
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Fig. 1 η (a) and ω (b) versus the polar angle ϕ for different distances from the heating spot center

parts, one can use the particular solutions of the inhomogeneous equations (52), (53), for which the displacements
vanish when the x1, x2-coordinates tend to infinity. Considering this case, let us study the thermoelastic deformation
resulting from the axisymmetric temperature disturbance:

θ = θ (r), r ≡
√

x2
1 + x2

2 , (59)

where r stands for the polar radius.
Notice that the thermoelastic strain can be divided into an isotropic (uniform expansion) and an anisotropic part.
The solution of (52) and (53) for the isotropic part can be found easily:

η (r) = (λ + 2µ)−1 (β + β1 ε) θ (r), ω (r) = 0. (60)

This solution contains two terms for η the first, (λ + 2µ)−1 βθ (r), corresponds to thermal expansion of the body
without initial strains and the second, (λ + 2µ)−1 β1εθ (r), determines the influence of the isotropic part of the
strain tensor on thermal expansion.

The solution for the anisotropic part can be found from (58). Taking into account the axial symmetry of the
temperature field (59), one obtains:

η (r, ϕ, t) = 2β2

λ + 2µ

∫ 2π

0

∫ ∞

0
(ε1 − ε2) cos 2ϕ′ ∂θ

∂r ′ G
(
r, ϕ, r ′, ϕ′) dr ′dϕ′

+ 2β2

λ + 2µ

∫ 2π

0

∫ ∞

0

(
ε1 sin2 ϕ′ + ε2 cos2 ϕ′) ∂

∂r ′ r
′ ∂θ

∂r ′ G
(
r, ϕ, r ′, ϕ′) dr ′dϕ′, (61)

ω (r, ϕ, t) = β2

2µ

∫ 2π

0

∫ ∞

0
(ε1 − ε2) sin 2ϕ′

(
− ∂θ

∂r ′ + r ′ ∂2θ

∂r ′2

)
G

(
r, ϕ, r ′, ϕ′) dr ′dϕ′. (62)

Here

G
(
r, ϕ, r ′, ϕ′) = log

(
r2 + r ′2 − 2rr ′ cos

(
ϕ − ϕ′))−1/2

,

where ε1 and ε2 are the main values of the initial strain tensor in the Cartesian coordinate system with origin in the
heating-spot center. The polar angles ϕ and ϕ′ are counted from the first main direction of the initial strain tensor.

If the temperature disturbance is applied in a sufficiently small area and the initial strain gradients are small
enough, the components ε1, ε2 in (38) can be treated as independent spatial coordinates. In Fig. 1(a,b) the nor-
malized angle dependencies of the parameters η (anisotropic components) and ω for ε2/ε1 = − 4 and different
distances r from the center of the temperature spot are presented.
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8 Case of homogeneous heating

As we can see from (28), the non-homogeneous thermal stresses and strains will arise in a pre-stressed body, even
under homogeneous external heating. This is caused by the dependence of the elastic moduli and the thermal-expan-
sion constants on the initial stress–strain state. In this case the ratio Dε/De is of order unity:

Dε

De

∼= 1. (63)

Because of the smallness of the initial E and thermoelastic E strain-tensor norms, the inequality (34) is still valid.
So the iterative process can be used in this case too. As a zero-order approximation, we have the following problem
for this case:

ρ
∂2wi

∂t2 = Cijkl

∂2wk

∂xj ∂xl

− (T − T0)
∂

∂xj

(
βij + Lijkl εkl

)
, (64)

Cijkl

∂wk

∂xl

nj

∣
∣
∣
∣
∂V

= (T − T0)
(
βij + Lijkl εkl

)
nj

∣
∣
∂V ,

[
Cijkl

∂wk

∂xl

νj

]

Sλ

= (T − T0)
[(

βij + Lijkl εkl

)
νj

]∣∣Sλ
, [wi]Sλ

= 0,

(65)

where T0 and T stand for homogeneous initial and current temperature of the body.
In the case of 2-D initial strain fields and a quasi-static approach, the functions fη and fω in the right-hand sides

of (52) and (53) for the zeroth approximation are

fη = (T − T0) (β1 + β2) 
ε, fω = (T − T0) β2
�, (66)

where

� = 1

2

(
∂u1

∂x2
− ∂u2

∂x1

)
; (67)

here u1 and u2 denote the displacement-vector components of the initial 2-D strain field.
We can now write down the next general solutions for the equations (52) and (53)

η = (T − T0)
(β1 + β2) (ε11 + ε22)

λ + 2µ
+ Hη, ω = (T − T0)

β2�

2µ
+ Hω, (68,69)

where Hη and Hω are piecewise-continuous harmonic functions. Choosing these functions, one can subject the
solutions (68) and (69) to the conditions (65).

9 The inverse-problem statement

The mathematical model developed here enables to calculate the thermoelastic strains and displacements that are
caused by small temperature disturbances in bodies with elastic initial deformations distributions when the initial
strain-tensor components εij (x1, x2, x3) and temperature field θ(x1, x2, x3, t) are given.

On the other hand, if a known heat flux acts upon the body and the components of the thermoelastic displace-
ments wi(x1, x2, x3, t) and/or strain eij (x1, x2, x3, t) are measured on some sub-area of the body (e.g. its surface),
we obtain data that can be used simultaneously with this model to formulate inverse problems for nondestructive
determinations of the initial stress–strain state.

In problems concerning the tomographical reconstruction of tensor fields in solids based on data obtained by
sounding the object by an external beam, it is often suitable to use integral relations that connect the measured infor-
mative parameters of the probing field with parameters of the stress–strain state being reconstructed. Equations (61)
and (62) give an example of such relations that express the parameters η and ω of the disturbed thermoelastic state
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in terms of the initial strain components εij and temperature θ distributions in the body volume. Thus, measuring
the parameters η and ω by, for instance, a speckle-laser-interferometry technique and juxtaposing the data with
relations (61) and (62) and the temperature distribution θ (r, t), one can retrieve some a posteriori information about
the initial stress–strain state.

Obviously, the problem of retrieving the initial 2-D strain field directly from the integral equations (61) and (62)
is ill-posed for several reasons. In particular, for local heating the measured parameters η and ω are not susceptible to
the strains beyond the heating area. This can be overcome by scanning the heating spot on the object and measuring
the parameters η and ω for each position of the heating spot. This allows to increase substantially the body of a
posteriori information.

The inverse problem can be easily regularized when the heating-spot radius is small enough, as the initial strain
components, εij , can be considered as invariable in the heating area. Then, for the known temperature field θ (r, t),
Eqs. (61) and (62) establish the finite relations connecting the initial strain components with the measured infor-
mative parameters. This means that for each heating spot we can write down two relations, connecting the main
values ε1 and ε2 of the initial strain tensor in the area of this heating spot with the disturbed thermoelastic field
parameters:

η (r, ϕ, t) = 2β2

λ + 2µ
[ε1A1 (r, ϕ, t) + ε2A2 (r, ϕ, t)] , ω (r, ϕ, t) = β2

2µ
(ε1 − ε2) A3 (r, ϕ, t), (70)

where Ai (r, ϕ, t) with i = 1, 2, 3 are parameters that can be determined from the known temperature field of the
disturbance:

A1 (r, ϕ, t) =
∫ 2π

0

∫ ∞

0

(
cos 2ϕ′ ∂θ

∂r ′ + sin2 ϕ′ ∂

∂r ′ r
′ ∂θ

∂r ′

)
G

(
r, ϕ, r ′, ϕ′) dr ′dϕ′

A2 (r, ϕ, t) =
∫ 2π

0

∫ ∞

0

(
cos2 ϕ′ ∂

∂r ′ r
′ ∂θ

∂r ′ − cos 2ϕ′ ∂θ

∂r ′

)
G

(
r, ϕ, r ′, ϕ′) dr ′dϕ′

A3 (r, ϕ, t) =
∫ 2π

0

∫ ∞

0
sin 2ϕ

(
− ∂θ

∂r ′ + r ′ ∂2θ

∂r ′2

)
G

(
r, ϕ, r ′, ϕ′) dr ′dϕ′

Thus, by measuring at some time moment t1 the parameters η1 and ω1 at some point (r1, ϕ1) within the heating
spot, one can solve the equations of (70) and find the main values ε1 and ε2 of the initial strain tensor in the area of
this heating spot

ε1 =
λ+2µ
2β2

η1A
1
3 + 2µ

β2
ω1A

1
2

A1
3

(
A1

1 + A1
2

) , ε2 =
2µ
β2

ω1A
1
1 − λ+2µ

2β2
η1A

1
3

A1
3

(
A1

1 + A1
2

) . (71)

Here A1
i = Ai (r1, ϕ1, t1) , i = 1, 2, 3.

As to the main directions of the initial strain tensor εij , these can be found directly from the plots showing the
dependencies of the parameters η and ω on the azimuth (see Fig. 1).

The parameters η and ω can be measured several times at t1, t2, . . . , tm during the heating-and-cooling process
at different points (r1, ϕ1), (r2, ϕ2), . . . , (rm, ϕm) within the heating spot. Using the obtained data (η1, ω1),
(η2, ω2), . . . , (ηm, ωm) together with (70), one can obtain an overdetermined system of equations, which can be
solved by a least-squares method. In such a way, the influence of random errors, unavoidable for such measurements,
can be reduced.

Another application of the developed model can be defined using the relations (68) and (69) for the case of
homogeneous heating. To measure the functions η (x1, x2) and ω (x1, x2), we have the problem of determining
the displacement components u1(x1, x2), u2(x1, x2) of the initial strain–stress state from the system of differential
equations

∂u1

∂x1
+ ∂u2

∂x2
= λ + 2µ

(β1 + β2) θ

(
η (x1, x2) − Hη

)
,

∂u1

∂x2
− ∂u2

∂x1
= µ

β2θ
(ω (x1, x2) − Hω), (72)

where the harmonic functions Hη (x1, x2) and Hω (x1, x2) should be chosen such as to satisfy all boundary and
interface conditions.
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10 Conclusion

The influence of the initial stress–strain state on thermoelastic processes induced in a prestressed solid by external
heating, is accounted for in a developed mathematical model through thermoelastic constitutive equations, i.e.,
through dependencies of the elastic modulus and temperature-expansion coefficients on the initial strain compo-
nents. Applying this approach for the case of small thermoelastic disturbances, we have obtained linear dynamic
equations for the displacements. The coefficients of these equations are dependent on the initial strain components.
The mathematical model describes temperature stresses and thermoelastic strains and displacements in piecewise
homogeneous bodies in which stresses, caused by external loading, and residual stresses, caused by deformation
incompatibility, occurring on the interface boundaries, act.

The solutions of pertinent boundary-value problems, formulated within the framework of the model, establish
relationships between parameters of the thermoelastic process and the initial stress–strain state. Parameters of the
processes, excited in the object by a known external thermal disturbance, can be measured. On the basis of these
measurements, data and an appropriate boundary-value problem describing the applied-heating process, one can
judge the initial stress–strain state of the object. Thus, the model can be used to develop nondestructive methods
for determining the initial stress–strain state of prestressed objects.

To achieve this, an applicable technique for high-precision measuring of non-stationary thermoelastic displace-
ments, and/or strains on the object surface during the process of its heating-and-cooling, should be developed.
In this connection the method of electronic speckle-shearing interferometry looks very promising. Examples of
the application of this precision measurement technique for stress-state parameter determination are given. For
instance, the digital speckle-pattern interferometry method is applied to measure surface displacements when the
hole-drilling method for the determination residual stresses is implemented [2]. This measurement technique can
probably be accommodated to measure the surface thermoelastic strain parameters under local heating of the body.

Simple examples of local and homogeneous heating, considered in the paper, show how the developed model
can be applied to retrieve parameters of the initial stress–strain state of the object from given parameters of ther-
moelastic strains at the surface, stimulated by the heating. The full-field retrieval of the stress–strain state of the
object using thermoelastic processes and the digital speckle-pattern interferometry technique is possible through
solving an appropriate inverse problem, stated within the framework of the developed mathematical model. The
object geometry, structure and techniques of data collection should be accounted for in such an inverse problem.
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